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The threshold energy Et = 10.06 eV (0.002 eV standard deviation) is
determined for photoelectron emission by liquid water and is correlated with
Et = 8.45 eV for OH (aq). Free energy changes and standard reduction
potentials are calculated for both emission processes. Reorganization free
energies are correlated to solvation free energies for HZO*(aq) and

OH (aqg).

The photoionization of liquid water was investigated in (1] by means of
photoelectron emission spectroscopy, and the emission threshold energy was
estimated at Et = 9.340.3 eV. The same photon energy (within +0.1 eV) was
deduced for the injection of holes in liquid water in a photoelectrochemical
study of gold electrodes [2]. Great care was taken in [1] to avoid spurious
emission by traces of insoluble organic impurities. Yet, subsequent work on
inorganic anions (see fig. 1 in [3]) in which two potential sources of
contamination were eliminated (sec. 1) indicated that the 9.3 eV threshold
energy is definitely too low. A new investigation of water was undertaken.
Its results are reported here and are correlated with the data for

photoelectron emission by hydroxide ion. b . ,




1. Results

The emission spectrometer was the same as in [1] except for two
improvements. The polyethylene cylinder insulating electrically the rotating
quartz disk (target) from its metallic shaft was replaced by a nylon
cylinder. The quartz disk was fastened to the insulating cylinder by means of
a nylon screw instead of being cemented. These changes were made prior to the
work in [3,4]. The LiF window between the hydrogen lamp and the monochromator
was replaced by a new window after the determination of only three spectra.
This was done to lower the noise level and stray light errors arising from
fogging of the window by color centers. Yields were corrected for attenuation
of the photon flux by water vapor in the 1 mm gap between the water surface
being irradiated and the opposite LiF window. The correcting factor computed
frorm data in [5] was taken to decrease linearly from 1.1 to 1.05 from 9.90 to
10.77 aV. The signal of the photomultiplier tube monitoring the photon flux
was multiplied by a factor increasing linearly by 8% between 9.90 and 10.77 eV
(data from (6.). This correction compensated for attenuation of the photon
flux in the LiF window opposite to the water surface. Spectra were determined
repeatedly until a constant threshold energy was obtained.

The spectrum of fig. 1 shows no noticeable emission below 9.9 eV (vs. ca.
9.3 eV in [1]), and yields are markedly lower than in (1), e.g., by a factor
of ca. 6 at 10.3 eV. Each point of the spectrum in fig. 1 represents the
average of eight measurements each of which was made with a fresh water
sample. The threshold energy Et = 10,06 eV (0.002 eV standard deviation)
was determined from a linear plot (97 points from 10.2 to 10.77 eV, fig. 1) of
the yield Y to the power 0.5 against photon energy (7). A statistical F-test
(8] unambiguously shows that the best linear fit of the data is obtained with
the exponent 0.5 of the yield. Departure from linearity near the threshold,




3
which is usual [3,4], arises from complications not taken into account in
theory [7]. Logarithmic dependence of the yield on photon energy fits the
data very poorly (F % 2,000), and there is no Urbach edge (cf. [1]).

2. Photoelectron emission by liquid water

Emission by liquid water will be interpreted on the basis of the eguation
3,41,
= - !
86, = 86 + 4Gy - 46, + lelx , (1)
where e is the electronic charge and x the surface potential at the water-

water vapor interface. The free energies AGe, &6, -86, -6, pertain,

r!
respectively, to the reactions,

H,0(aq) = H,0"(aq,) + ™(g) (2)
H20+(aq*) = H20+(aq) (3)
H,0"(aq) + 172 Hy(g) = H,0(2q) + H'(aq) (4)
H'(aq) + €7(g) = 1/2 Hy(g). (5)

The free eriergy of photoelectron emission AGe according to (2) includes the
contribution for electronic polarization of the medium by H20+(aq*) but
not for orientation polarization (Franck-Condon principle). The
reorganization free energy AGr for (3) is the sum of the contributions for
orientation polarization of the medium and vibrational and rotational
relaxation of the ion produced by photoionization, The latter contribution is
negligible since interatomic distances hardly change in the photoionization of
Hy0 in the gas phase [9]. The free energy 4G, = 4.50 eV (10] correlates
the free energies referred to the vacuum Jevel of the electron to the free
energies referred to the H+(aq)/1/2 Hz(g) couple. The quantity 4G, does
not include the contribution from the surface potential x = +0.1 V [11].

The free energy sG, differs from the threshold energy E, because of
the contribution from the surface potential x and possibly a systematic shift




4

inherent to the extrapolation method and theory [7] yielding Et' It was
found in [3] that measured E 's and calculated 86,'s for c1’, Br,
I” agree within the uncertainty arising from the surface potential. There
is no reason to expect a different conclusion for other photoionized species,
and the relationship AGe Y Et should hold in general. Thus, we set
86, % Ey = 10.06 eV in (1) for liquid water.

Lower and upper limits of the free energy 4G in (1) will be obtained.
The ions H20+(aq) and OH (aq) are of comparable size, and consequently
their solvation and reorganization free energies should not be very ‘
different. If one uses the value 4G, = -1.98 eV for OH™ (aq) (sec. 3) in
(1), one computes a& = 3.58 eV. Another limit can be set on the value of 4G
by using the gas-phase first ionization energy of water I = 12.61 eV [9]. The
quantity I is an enthalpy, and the entropy contribution to gas-phase
ionization is neglected. One has I > AGe for two reasons: electronic
polarization of the medium by the ion H20+(aq*) produced by (2) and
distribution of density of states in the liquid [12]. One can assume that the
free energy of vaporization of water is nearly compensated by the contribution
to the solvation free energy of H20+(g) not arising from the ionic
charge. Thus, I - AGe > -AGep, where AGep is the contribution from
electronic polarization of the medium to the solvation free energy AGs of
H20+(aq). The quantity AGS is the solvation real energy in
electrochemical terminology (e.g., [13]). Thus, AGep > 10.0¢ - 12.61 eV or
o6, > -2.55 eV. The ratic AGr/AGs is close to 0.50 for the halides

ep
(Table 1) and OH™ (aq) (sec. 3), and it will be assumed that this ratio is

also near 0.50 for H20+(aq), Hence, Asep f AGr for H20+(aq), and

46, > -2.55 eV, The corresponding limit is 4G > 3.01 eV. Combining this

1imit with the upper limit a6 = 3.58 eV, one concludes that 46 = 3.3+0.3 eV.
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This result is consistent with the value 4G = 3.4+0.5 eV estimated in [15]
from thermodynamic and kinetic data.

The changes of free energy for photoelectron emission by water are
displayed in fig. 2. The corresponding standard reduction potentials are also
shown, Reactions are written as oxidations (from left to right) for the scale
of free energies and as reductions for the scale of standard potentials.

The least photon energy required for photolysis of water with production
of hydrated electrons e (ag) can be estimated [15]) from E° = 3.3+0.3 eV
for H20+(aq)/H20(aq) and £% = -2.77 ev {16] for e (ag). Thus, a
photan energy of at least 2.77 + 3.3+0.3 & 6.1+0.3 eV is required to produce
e (g). Formation of this Specjes is indeed observed below 6.5 eV {16].

3. Photoelectron emission by hydroxide ion

The previously reported [3] threshold energy Et = 8.45 eV of OH (aq)
ion was confirmed in the present investigation. This result will be

interpreted by the sequence of reactions:

OH™(aq) = OH(ag,) + e(g) (6)
OH(aq,) = OH(aq)l (7)
0i(aq) + 1/2Hy(g) = OH (ag) + H'(aq) (8)
H'(aq) + e7(g) = 1/2H,(g).. (9) J

The hydroxyl OH(aq,) produced by photoionization in (6) has initially the
solvation confiéuration of OH (aq) except for the loss of electronic
polarization. Subsequent reorganizat%on'in (7) yields OH{aq). The 0-H
interatomic distance can be taken as constant during this process since this

distance is the same within 0.002 A for OH (g) and O4(g) [17]. The loss of

orientation polarization therefore is the sole contribution to AGr for (7).
The effect of OH  on the surface potential of water is considerably smaller
than that of C1° [13], and the corresponding uncertainty can be taken to be

that of water, namely +0.1 V [11].
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: The value of AGe deduced from (6) to (9) is given by eq. (1) where
‘ 86, % E, = 8.45 eV and 4G = 1.97 eV [15]. One computes from (1) 6. =
1.98+0.1 eV. The changes of free energy and standard reduction potentials are
shown in fig. 2 for photoelectron emission by hydroxide ion.

The ratio AGr/AGs for the hydroxide ion will be determined to
complement the results of Table 1. The solvation enthalpy of OH (aq) is
-4,78+0.25 eV [18]. This quantity can also be computed from a cycle of
reactions involving the electron affinity (1.83+0.04 eV [17]) of OH(g). The
free energy AGS for this cycle can also be calculated if the unknown entropy

contribution is neglected for the process OH(g) + e (g) = OH (g). The

entropy contribution to the solvation free energy AGS of OH (aq) is

estimated in this way at ca. 0.6 eV from the enthalpy and free energy

calculations. Thus, 26, = -4.78 + 0.6+0.25 % -4.240.3 eV. Since 4G =

-1.98+0.1 eV for OH (aq), one obtains 0.44 < 86,/0E < 0.51. This
result is comparable to the more accurate ratios for the halides in Table 1.

4, Correlation between the threshold energies of water and hydroxide ion

The threshold energies of H,0(aq) and OH™ (aq) will be correlated using
fig. 3. The levels at -2.46 and -1.63 eV_in this diagram correspond,
respectively, to the free energies of formation of H,0(aq) and OH™ (aq) [19].
These levels differ by 0.0592 log 10'14 = -0.83 eV. One has 4G = 3.3+40.3 eV,

AG, = 4.5 eV, AGr = -2.26+0.3 eV for emission by H20(aq) (sec. 2).

H
Likewise, 4G = 1.97 eV, AEH = 4.5 eV, AGr = -1.98+0.1 eV for emission by

OH (aq) (sec. 3). One deduces from fig. 3,
AGe(HZO) - AGe(OH’) = [AG(OH™) - AG(H?_O)]
+ [86(H,0") - 2G(OH)] + (46, (OH) - 26, (H,0")]
= (-1.63 + 2.46) + (0.84 - 0.34) + (-1.98 + 2.26)
= 0.8 + 0.5 + 0.28
= 1.61 eV. (10)
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The symbol (aq) is deleted from all species in (10) to simplify the writing.
The sum of the quantities between the first and second pairs of brackets in
(10) represents the difference between the free energy changes 46 = 3.3 and
1.97 eV for emission by H,0(ag) and OH™ (ag).

The threshold energies (Aee » E., sec. 2) of H20(aq) and OH (ag)

s
are different, according to (10), for the following reasons: (i) The free
energy of formation is less negative by 0.83 eV for OH (aq) than for
H20(aq). This is the case because water is only slightly dissociated. (ii)
The OH(aq) radical does not protonate even in acid (1 M) solution [15], and
therefore the free energy of formation of H20+(aq) must be more positive
than that of OH(aq). Decomposition of H20+(aq) into OH(aq) and H+(aq)

is favored. (iii) The reorganization free energies of H20+(aq) and OH(aq)

are not equal (but not very different).
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Table 1

Experimental and calculated AGr/AGS ratios for the halides

e2) 2 -6, 26, 06,/26, 06 /26.°)

(eV) (eV) (eV) (ev) (experimental) (theory)
| - - - 4.66 - 0.50
| ¢ 8.8l 2.51 1.8 3.46 0.52 0.50
Br™  8.05 1.9 1.57 3.18 0.49 0.49
I© 7.9 1.32 1.37 2.81 0.49 0.48

; a)with correction for absorption in water vapor and LiF window (sec. 1).
- b)AG for X (aq) = X(ag) + e"(g). 46 includes 46, = 0.06 eV for X(g) =
X(aq) [101.

©)a6, caleulated from eq. (8) in 141, 46

AGS - AGep‘ where

AGep (< 0) is computed from the Born equation.
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Captions to Figures

Fig. 1. Photoelectron emission spectrum of liquid water at 1.5°C (curve A)
and plot of the yield (Y) to the power n = 0.5 vs, photon energy {line B).
Plot for statistical F-test of the exponent n of the yield in inset. F =
R2(N -2)/(1 - R2), where R is the correlation coefficient for least
square fitting of line B and N the number of points.

Fig. 2. Free energy changes (vs. vacuum level of the electron) and standard

reduction potentials for photoelectron emission by water and hydroxide ion.

Uncertainties given in text.

Fig. 3. Free energies of formation and free energy changes for photoelectron
emission by water and hydroxide ion., Symbol (aq) deleted from all species.

e (g) represents the electron in the gas phase.
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